Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(8): 2129-2135, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633035

RESUMO

We have developed a one-tube fluorescence strategy for the detection of B7-H3 based on a proximity hybridization-mediated protein-to-DNA signal transducer, isothermal exponential amplification (EXPAR), and dendritic hybridization chain reaction (D-HCR). In this assay, a protein signal transducer was employed to convert the input protein to output single-stranded DNA with a nicking site. Antibody-conjugated DNA1 was first hybridized with the output DNA (DNA3). The binding of antibodies conjugated DNA1 and DNA2 to the same protein was able to increase the local concentrations, resulting in strand displacement between DNA3 and DNA2. DNA3 with a nicking endonuclease recognition sequence at the 5' end then hybridized with hairpin probe 1 to mediate EXPAR in the presence of nicking endonuclease and DNA polymerase. A large number of single-strand DNA were produced in the circle of nicking, polymerization, and strand displacement. The resulting ssDNA products were further amplified by D-HCR to produce many large-molecular concatemers. The resulting DNA products can be monitored in real-time fluorescence signaling. Our proposed assay can realize one-tube detection due to the same reaction temperature of the protein-to-DNA signal transducer, EXPAR, and DHCR. This assay has a linear range from 100 fg mL-1 to 1 µg mL-1 with a detection limit down to 100 fg mL-1. This work shows a good performance in clinical specimen detection.

2.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486149

RESUMO

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Assuntos
Clorofila , 60439 , Clorofila/metabolismo , Transcriptoma , Fotossíntese , Açúcares , Carbono
3.
Plant Cell Physiol ; 65(2): 216-227, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37930871

RESUMO

Vitis zhejiang-adstricta (V. zhejiang-adstricta) is one of the most important and endangered wild grapes. It is a national key protected wild, rare and endangered ancient grape endemic to China and used as a candidate material for resistance breeding owing to its excellent significant disease resistance. Here, we present a high-quality chromosome-level assembly of V. zhejiang-adstricta (IB-VB-01), comprising 506.66 Mb assembled into 19 pseudo-chromosomes. The contig N50 length is 3.91 Mb with 31,196 annotated protein-coding genes. Comparative genome and evolutionary analyses illustrated that V. zhejiang-adstricta has a specific position in the evolution of East Asian Vitis and shared a common ancestor with Vitis vinifera during the divergence of the two species about 10.42 (between 9.34 and 11.12) Mya. The expanded gene families compared with those in plants were related to disease resistance, and constructed gene families were related to plant growth and primary metabolism. With the analysis of gene family expansion and contraction, the evolution of environmental adaptability and especially the NBS-LRR gene family of V. zhejiang-adstricta was elucidated based on the pathways of resistance genes (R genes), unique genes and structural variations. The near-complete and accurate diploid V. zhejiang-adstricta reference genome obtained herein serves as an important complement to wild grape genomes and will provide valuable genomic resources for investigating the genomic architecture of V. zhejiang-adstricta as well as for improving disease resistance breeding strategies in grape.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Resistência à Doença/genética , Genoma de Planta/genética , Genômica , China , Filogenia
4.
Hortic Res ; 10(10): uhad176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868620

RESUMO

Anthocyanins are essential for the quality of perennial horticultural crops, such as grapes. In grapes, ELONGATED HYPOCOTYL 5 (HY5) and MYBA1 are two critical transcription factors that regulate anthocyanin biosynthesis. Our previous work has shown that Vitis vinifera B-box protein 44 (VvBBX44) inhibits anthocyanin synthesis and represses VvHY5 expression in grape calli. However, the regulatory mechanism underlying this regulation was unclear. In this study, we found that loss of VvBBX44 function resulted in increased anthocyanin accumulation in grapevine callus. VvBBX44 directly represses VvMYBA1, which activates VvBBX44. VvMYBA1, but not VvBBX44, directly modulates the expression of grape UDP flavonoid 3-O-glucosyltransferase (VvUFGT). We demonstrated that VvBBX44 represses the transcriptional activation of VvUFGT and VvBBX44 induced by VvMYBA1. However, VvBBX44 and VvMYBA1 did not physically interact in yeast. The application of exogenous anthocyanin stimulated VvBBX44 expression in grapevine suspension cells and tobacco leaves. These findings suggest that VvBBX44 and VvMYBA1 form a transcriptional feedback loop to prevent overaccumulation of anthocyanin and reduce metabolic costs. Our work sheds light on the complex regulatory network that controls anthocyanin biosynthesis in grapevine.

5.
Mol Hortic ; 3(1): 21, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853418

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) /Cas12a system, also known as CRISPR/Cpf1, has been successfully harnessed for genome engineering in many plants, but not in grapevine yet. Here we developed and demonstrated the efficacy of CRISPR/Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in inducing targeted mutagenesis by targeting the tonoplastic monosaccharide transporter1 (TMT1) and dihydroflavonol-4-reductase 1 (DFR1) genes in 41B cells. Knockout of DFR1 gene altered flavonoid accumulation in dfr1 mutant cells. Heat treatment (34℃) improved the editing efficiencies of CRISPR/LbCas12a system, and the editing efficiencies of TMT1-crRNA1 and TMT1-crRNA2 increased from 35.3% to 44.6% and 29.9% to 37.3% after heat treatment, respectively. Moreover, the sequences of crRNAs were found to be predominant factor affecting editing efficiencies irrespective of the positions within the crRNA array designed for multiplex genome editing. In addition, genome editing with truncated crRNAs (trucrRNAs) showed that trucrRNAs with 20 nt guide sequences were as effective as original crRNAs with 24 nt guides in generating targeted mutagenesis, whereas trucrRNAs with shorter regions of target complementarity ≤ 18 nt in length may not induce detectable mutations in 41B cells. All these results provide evidence for further applications of CRISPR/LbCas12a system in grapevine as a powerful tool for genome engineering.

6.
Ann Bot ; 132(5): 1033-1050, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850481

RESUMO

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.


Assuntos
Vitis , Vinho , Vitis/genética , Antocianinas/análise , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Vinho/análise
7.
Hortic Res ; 10(9): uhad160, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719274

RESUMO

The quality of planting materials is the foundation for productivity, longevity, and berry quality of perennial grapevines with a long lifespan. Manipulating the nursery light spectrum may speed up the production of healthy and high-quality planting vines but the underlying mechanisms remain elusive. Herein, the effects of different monochromatic lights (green, blue, and red) on grapevine growth, leaf photosynthesis, whole-plant carbon allocation, and transcriptome reprograming were investigated with white light as control. Results showed that blue and red lights were favorable for plantlet growth in comparison with white light. Blue light repressed excessive growth, significantly increased the maximum net photosynthetic rate (Pn) of leaves by 39.58% and leaf specific weight by 38.29%. Red light increased the dry weight of the stem by 53.60%, the starch content of the leaf by 53.63%, and the sucrose content of the stem by 230%. Green light reduced all photosynthetic indexes of the grape plantlet. Photosynthetic photon flux density (PPFD)/Ci-Pn curves indicated that blue light affected photosynthetic rate depending on the light intensity and CO2 concentration. RNA-seq analysis of different organs (leaf, stem, and root) revealed a systematic transcriptome remodeling and VvCOP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1), VvHY5 (ELONGATED HYPOCOTYL5), VvHYH (HY5 HOMOLOG), VvELIP (early light-induced protein) and VvPIF3 (PHYTOCHROME INTERACTING FACTOR 3) may play important roles in this shoot-to-root signaling. Furthermore, the correlation network between differential expression genes and physiological traits indicated that VvpsbS (photosystem II subunit S), Vvpsb28 (photosystem II subunit 28), VvHYH, VvSUS4 (sucrose synthase 4), and VvALDA (fructose-bisphosphate aldolase) were pertinent candidate genes in responses to different light qualities. Our results provide a foundation for optimizing the light recipe of grape plantlets and strengthen the understanding of light signaling and carbon metabolism under different monochromatic lights.

8.
Hortic Res ; 10(9): uhad151, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701455

RESUMO

The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, ß-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.

9.
Hortic Res ; 10(3): uhad001, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938570

RESUMO

Grape is a widely cultivated crop with high economic value. Most cultivars derived from mild or cooler climates may not withstand increasing heat stress. Therefore, dissecting the mechanisms of heat tolerance in grapes is of particular significance. Here, we performed comparative transcriptome analysis of Vitis davidii 'Tangwei' (heat tolerant) and Vitis vinifera 'Jingxiu' (heat sensitive) grapevines after exposure to 25°C, 40°C, or 45°C for 2 h. More differentially expressed genes (DEGs) were detected in 'Tangwei' than in 'Jingxiu' in response to heat stress, and the number of DEGs increased with increasing treatment temperatures. We identified a class B Heat Shock Factor, HSFB1, which was significantly upregulated in 'Tangwei', but not in 'Jingxiu', at high temperature. VdHSFB1 from 'Tangwei' and VvHSFB1 from 'Jingxiu' differ in only one amino acid, and both showed similar transcriptional repression activities. Overexpression and RNA interference of HSFB1 in grape indicated that HSFB1 positively regulates the heat tolerance. Moreover, the heat tolerance of HSFB1-overexpressing plants was positively correlated to HSFB1 expression level. The activity of the VdHSFB1 promoter is higher than that of VvHSFB1 under both normal and high temperatures. Promoter analysis showed that more TATA-box and AT~TATA-box cis-elements are present in the VdHSFB1 promoter than the VvHSFB1 promoter. The promoter sequence variations between VdHSFB1 and VvHSFB1 likely determine the HSFB1 expression levels that influence heat tolerance of the two grape germplasms with contrasting thermotolerance. Collectively, we validated the role of HSFB1 in heat tolerance, and the knowledge gained will advance our ability to breed heat-tolerant grape cultivars.

10.
Plant Physiol Biochem ; 196: 1084-1097, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36921558

RESUMO

Ethylene (ETH) plays important roles in various development programs and stress responses in plants. In grapevines, ETH increased dramatically under chilling stress and is known to positively regulate cold tolerance. However, the role of ETH in transcriptional regulation during chilling stress of grapevine leaves is still not clear. To address this gap, targeted hormone profiling and transcriptomic analysis were performed on leaves of Vitis amurensis under chilling stress with and without aminoethoxyvinylglycine (AVG, a inhibitor of ETH synthesis) treatment. APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and WRKY transcription factors (TF) were only the two highly enriched TF families that were consistently up-regulated during chilling stress but inhibited by AVG. The comparison of leaf transcriptomes between chilling treatment and chilling with AVG allowed the identification of potential ETH-regulated genes. Potential genes that are positively regulated by ETH are enriched in solute transport, protein biosynthesis, phytohormone action, antioxidant and carbohydrate metabolism. Conversely, genes related to the synthesis and signaling of ETH, indole-3-acetic acid (IAA), abscisic acid (ABA) were up-regulated by chilling treatment but inhibited by AVG. The contents of ETH, ABA and IAA also paralleled with the transcriptome data, which suggests that the response of ABA and IAA during chilling stress may regulate by ETH signaling, and together may belong to an integrated network of hormonal signaling pathways underpinning chilling stress response in grapevine leaves. Together, these findings provide new clues for further studying the complex regulatory mechanism of ETH under low-temperature stress in plants more generally and new opportunities for breeding cold-resilient grapevines.


Assuntos
Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Etilenos/farmacologia , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Temperatura Baixa , Folhas de Planta/metabolismo
11.
Science ; 379(6635): 892-901, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862793

RESUMO

We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.


Assuntos
Evolução Biológica , Domesticação , Vitis , Humanos , Agricultura , Ásia Ocidental , Ecótipo , Fenótipo , Vitis/genética , Aclimatação
12.
Plant Physiol ; 192(3): 1733-1746, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36789447

RESUMO

Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures (LTs) annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely LTs, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.


Assuntos
Resposta ao Choque Frio , Vitis , Transcriptoma , Genômica , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Vitis/fisiologia , Temperatura Baixa
13.
Hortic Res ; 10(1): uhac250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643748

RESUMO

Heat stress limits growth and development of crops including grapevine which is a popular fruit in the world. Genetic variability in crops thermotolerance is not well understood. We identified and characterized heat stress transcription factor HSFA2 in heat sensitive Vitis vinifera 'Jingxiu' (named as VvHSFA2) and heat tolerant Vitis davidii 'Tangwei' (named as VdHSFA2). The transcriptional activation activities of VdHSFA2 are higher than VvHSFA2, the variation of single amino acid (Thr315Ile) in AHA1 motif leads to the difference of transcription activities between VdHSFA2 and VvHSFA2. Based on 41 Vitis germplasms, we found that HSFA2 is differentiated at coding region among heat sensitive V. vinifera, and heat tolerant Vitis davidii and Vitis quinquangularis. Genetic evidence demonstrates VdHSFA2 and VvHSFA2 are positive regulators in grape thermotolerance, and the former can confer higher thermotolerance than the latter. Moreover, VdHSFA2 can regulate more target genes than VvHSFA2. As a target gene of both VdHSFA2 and VvHSFA2, overexpression of MBF1c enhanced the grape thermotolerance whereas dysfunction of MBF1c resulted in thermosensitive phenotype. Together, our results revealed that VdHSFA2 confers higher thermotolerance than VvHSFA2, and MBF1c acts as their target gene to induce thermotolerance. The VdHSFA2 may be adopted for molecular breeding in grape thermotolerance.

14.
Plant Cell ; 35(1): 552-573, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36255259

RESUMO

When exposed to pathogen infection or ultraviolet (UV) radiation, grapevine (Vitis vinifera) plants rapidly accumulate the stilbenoid resveratrol (Res) with concomitant increase of stilbene synthase (STS), the key enzyme in stilbene biosynthesis. Although a few transcription factors have been shown to regulate STSs, the molecular mechanism governing the regulation of STSs is not well elucidated. Our previous work showed that a VvMYB14-VvWRKY8 regulatory loop fine-tunes stilbene biosynthesis in grapevine through protein-protein interaction; overexpression of VvWRKY8 down-regulates VvMYB14 and VvSTS15/21; and application of exogenous Res up-regulates WRKY8 expression. Here, we identified an R2R3-MYB repressor, VvMYB30, which competes with the activator VvMYB14 for binding to the common binding sites in the VvSTS15/21 promoter. Similar to VvMYB14, VvMYB30 physically interacts with VvWRKY8 through their N-termini, forming a complex that does not bind DNA. Exposure to UV-B/C stress induces VvMYB14, VvWRKY8, and VvSTS15/21, but represses VvMYB30 in grapevine leaves. In addition, MYB30 expression is up-regulated by VvWRKY8-overexpression or exogenous Res. These findings suggest that the VvMYB14-VvWRKY8-VvMYB30 regulatory circuit allows grapevine to respond to UV stress by producing Res and prevents over-accumulation of Res to balance metabolic costs. Our work highlights the stress-mediated induction and feedback inhibition of stilbene biosynthesis through a complex regulatory network involving multiple positive and negative transcriptional regulators.


Assuntos
Estilbenos , Vitis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Vitis/genética , Vitis/metabolismo , Estilbenos/metabolismo , Resveratrol/metabolismo
15.
Hortic Res ; 9: uhac208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467268

RESUMO

Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia's ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.

17.
BMC Plant Biol ; 22(1): 427, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064347

RESUMO

BACKGROUND: Hormones play an indispensable role during fruit ripening, nine clades in 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily are responsible for the hormone biosynthesis and metabolism, but less information is known about them. RESULTS: A total of 163 Vv2OGD superfamily members were identified from grape genome, which were mainly expanded by local (tandem and proximal) duplication. Phylogenetic analysis of 2OGD members in grape and Arabidopsis indicates 37 members in Vv2OGD superfamily are related to hormone biosynthesis and metabolism process (Vv2OGD-H), which could be divided into 9 clades, gibberellin (GA) 3-oxidase (GA3ox), GA 20-oxidase (GA20ox), carbon-19 GA 2-oxidase (C19-GA2ox), carbon-20 GA 2-oxidase (C20-GA2ox), 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), dioxygenase for auxin oxidation (DAO), lateral branching oxidoreductas (LBO), downy mildew resistant 6 and DMR6-like oxygenase (DMR6/DLO) and jasmonate-induced oxygenase (JOX). Sixteen of these 37 Vv2OGD-Hs are expressed in grape berry, in which the expression patterns of VvGA2oxs, VvDAOs and VvJOXs shows a correlation with the change patterns of GAs, indole-3-acetic acid (IAA) and jasmonates (JAs), indicating the involvement of these genes in grape berry development by regulating corresponding hormones. Twelve Vv2OGD-Hs respond to methyl JA (MeJA) treatment, of which eight may lead to the inhibition of the ripening process by the crosstalk of JAs-salicylic acids (SAs), JAs-GAs and JAs-JAs, while seven Vv2OGD-Hs respond to ABA treatment may be responsible for the promotion of ripening process by the interplay of abscisic acid (ABA)-strigolactones (SLs), ABA-SAs, ABA-GAs, ABA-JAs. Especially, VvLBO1 reach an expression peak near véraison and up-regulate about four times after ABA treatment, which implies SLs and ABA-SLs crosstalk may be related to the onset of berry ripening in grape. CONCLUSIONS: This study provides valuable clues and new insights for the mechanism research of Vv2OGD-Hs in hormones regulation during the grape berry development.


Assuntos
Arabidopsis , Dioxigenases , Vitis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo
19.
BMC Plant Biol ; 22(1): 271, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655129

RESUMO

BACKGROUND: Abscisic acid (ABA) plays a crucial role in abiotic stress responses. The pyrabactin resistance (PYR)/PYR-like (PYL)/regulatory component of ABA receptor (RCAR) proteins that have been characterized as ABA receptors function as the core components in ABA signaling pathway. However, the functions of grape PYL genes in response to different abiotic stresses, particularly cold stress, remain less studied. RESULTS: In this study, we investigated the expression profiles of grape PYL genes upon cold treatment and isolated the VaPYL4 gene from Vitis amurensis, a cold-hardy grape species. Overexpression of VaPYL4 gene in grape calli and Arabidopsis resulted in enhanced cold tolerance. Moreover, plant resistance to drought and salt stress was also improved by overexpressing VaPYL4 in Arabidopsis. More importantly, we evaluated the contribution of VaPYL4 to plant growth and development after the treatment with cold, salt and drought stress simultaneously. The transgenic plants showed higher survival rates, earlier flowering phenotype, and heavier fresh weight of seedlings and siliques when compared with wild-type plants. Physiological analyses showed that transgenic plants had much lower content of malondialdehyde (MDA) and higher peroxidase (POD) activity. Stress-responsive genes such as RD29A (Responsive to desiccation 29A), COR15A (Cold responsive 15A) and KIN2 (Kinase 2) were also significantly up-regulated in VaPYL4-overexpressing Arabidopsis plants. CONCLUSIONS: Our results show that overexpression of VaPYL4 could improve plant performance upon different abiotic stresses, which therefore provides a useful strategy for engineering future crops to deal with adverse environments.


Assuntos
Arabidopsis , Vitis , Ácido Abscísico , Arabidopsis/genética , Secas , Plantas Geneticamente Modificadas , Estresse Salino , Vitis/genética
20.
Plant J ; 111(3): 836-848, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673966

RESUMO

Lilacs (Syringa L.), a group of well-known ornamental and aromatic woody plants, have long been used for gardening, essential oils and medicine purposes in East Asia and Europe. The lack of knowledge about the complete genome of Syringa not only hampers effort to better understand its evolutionary history, but also prevents genome-based functional gene mining that can help in the variety improvement and medicine development. Here, a chromosome-level genome of Syringa oblata is presented, which has a size of 1.12 Gb including 53 944 protein coding genes. Synteny analysis revealed that a recent duplication event and parallel evolution of two subgenomes formed the current karyotype. Evolutionary analysis, transcriptomics and metabolic profiling showed that segment and tandem duplications contributed to scent formation in the woody aromatic species. Moreover, phylogenetic analysis indicated that S. oblata shared a common ancestor with Osmanthus fragrans and Olea europaea approximately 27.61 million years ago (Mya). Biogeographic reconstruction based on a resequenced data set of 26 species suggested that Syringa originated in the northern part of East Asia during the Miocene (approximately 14.73 Mya) and that the five Syringa groups initially formed before the Late Miocene (approximately 9.97 Mya). Furthermore, multidirectional dispersals accompanied by gene introgression among Syringa species from Northern China during the Miocene were detected by biogeographic reconstruction. Taken together, the results showed that complex gene introgression, which occurred during speciation history, greatly contributed to Syringa diversity.


Assuntos
Oleaceae , Syringa , Cromossomos , Oleaceae/genética , Filogenia , Syringa/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...